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Excitation spectrum and staggering transformations in lattice quantum models
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We consider the energy-momentum excitation spectrum of diverse lattice Hamiltonian operators: the gen-
erator of the Markov semigroup of Ginzburg-Landau models with Langevin stochastic dynamics, the Hamil-
tonian of a scalar quantum field theory, and the Hamiltonian associated with the transfer matrix of a classical
ferromagnetic spin system at high temperature. The low-lying spectrum consists of a one-particle state and a
two-particle band. The two-particle spectrum is determined using a lattice version of the Bethe-Salpeter
equation. In addition to the two-particle band, depending on the lattice dimension and on the attractive or
repulsive character of the interaction between the particles of the system, there is, respectively, a bound state
below or above the two-particle band. We show how the existence or nonexistence of these bound states can
be understood in terms of a nonrelativistic single-particle lattice Schro¨dinger Hamiltonian with a delta poten-
tial. A staggering transformation relates the spectra of the attractive and the repulsive cases.
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I. INTRODUCTION

In previous works@1–3#, we determined some interestin
features of the low-lying energy-momentum (e-m) spectrum
associated with the generator of stochastic Ginzburg-Lan
~GL! continuous time, continuous and unbounded spinZd

infinite space lattice models of nonequilibrium statistical m
chanics. The generator or Hamiltonian is that of an infin
lattice quantum field theory with slightly nonlocal intera
tions. The Hamiltonian spectrum has a quasiparticle interp
tation with a one-particle isolated dispersion curve and a
nite two-particle band. The interaction of the particles has
attractive or repulsive character depending on the parame
of the model. In the attractive case, ford51,2, a bound state
occurs below the two-particle threshold and, quite surp
ingly, a bound state occurs above the band in the repul
case. These results are established using a Feynman-Ka
mula and a lattice version of the Bethe-Salpeter~BS! equa-
tion, first, up to the ladder approximation and then, contr
ling perturbations about Gaussians, for the complete mod

Here we show that similar spectral phenomena occur
other diverse Hamiltonians, i.e., that of a lattice scalar qu
tum field theory and the Hamiltonian associated with min
the logarithm of the transfer matrix of classical ferroma
netic spin systems of equilibrium statistical mechanics
high temperature~small b) on Zd. In the case of the spin
system, there is a discrete imaginary time localZd21 lattice
field theory associated with the model and the comp
model is not necessarily described by a perturbation o
Gaussian@4#.

Furthermore, we show that the spectral results can be
derstood in terms of the spectrum of a one-particle lat
Schrödinger Hamiltonian H52D1V(l)[H01V(l),
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where D is the lattice Laplacian andV[V(l)5ld is an
attractive (l,0) or repulsive (l.0) delta potential at the
origin. It turns out that the Schro¨dinger resolvent equation
with V as a perturbation,

~H2zI!215~H02zI!212~H02zI!21V~H2zI!21, ~1!

is a good approximation to the zero system momentum
equation~see Ref.@7#! which has the general formD5D0

1D0K D. D0 corresponds to the free resolvent,D to the
interacting resolvent, andK to minus the potentialV. In the
ladder approximation, the nonlocalK is a local delta poten-
tial in the models we consider. Now,H acting on,2(Zd) has
a continuous bounded spectrum starting at zero and, fol
,0 a negative energy bound state. Forl.0, there is a posi-
tive energy bound state above the continuum.

In contrast to the case of continuum quantum field theo
a richer low-lying e-m spectrum for the lattice models w
analyze is allowed by the absence of the Poincare´ invariance
on the lattice. Much of this spectral structure disappears
the continuum limit, which will not concern us here. We al
point out that the above lattice Schro¨dinger operator can be
understood in another way, i.e., the one-particle tim
independent lattice Schro¨dinger eigenvalue equation with
delta potential, which corresponds to the normal mode eq
tion of polarized classical oscillations of an infinite lattic
equal-mass, Hookian spring system with an isotopic type
fect ~different mass! at the origin. The normal modes of suc
systems are discussed in Refs.@5,6#, in particular the physics
for the modes below and above the continuum freque
band. The case of the repulsive potential corresponds
small mass at the origin; there is a highest-energy nor
mode ~bound state!, with energy above the continuous e
ergy band, where adjacent particles are moving 180° ou
phase, in opposite directions.

The paper is organized as follows. In Sec. II, we obta
the spectral properties ofH, introduce the staggering trans
formation, and analyze its relation with the spectrum. In S
©2002 The American Physical Society08-1
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III, we briefly show how staggering applies to the latti
scalar quantum field model and to lattice stochastic GL t
models. In Sec. IV, we determine the spectrum above
two-particle band for a classical ferromagnetic spin system
high temperature and make the correspondence with the
relativistic single-particle Schro¨dinger delta potential Hamil-
tonian.

II. DELTA FUNCTION POTENTIAL AND STAGGERING

The e-m spectral behavior around the two-particle ba
for the models described above can be understood in te
of the spectral properties of aZd lattice Schro¨dinger Hamil-
tonianH for a particle in a delta potential at the origin, i.e
with xW5(x1, . . . ,xd)PZd,

H5H01V[2D1V, V~xW !5ld~xW !, ~2!

whereH acts on,2(Zd), and (ej is the unit vector along the
j th direction!

2D f ~xW !52d f~xW !2(
j 51

d

f ~xW1ej !2(
j 51

d

f ~xW2ej !,

f P,2~Zd!.

In momentum space,H0 is multiplication by 2( j 51
d (1

2cospj)[2D̃(pW), pW 5(p1, . . . ,pd)PTd[(2p,p#d, and the
spectrum ofH0 is @0,4d#, and is absolutely continuous. Un
like the continuum, the lattice delta potential is a bound
operator for anyd.

We now determine the spectral properties of the Ham
tonian H of Eq. ~2!. First, we define a unitarystaggering
transformationU, which plays a key role in understandin
the relation between the spectrum ofH with l.0 and l
,0, by

U f ~xW !5~21!(
j 51

d

xj
f ~xW !, f P,2~Zd!, ~3!

and satisfiesU25I , U215U, and its momentum represen
tation has the form (U f );(pW )5 f̃ (pW 2pW ), where pW

[(p,p, . . . ,p), and f̃ (pW )5(xWPZde2 ipW •xW f (xW ). U takes
smooth functions into rough functions and vice versa and
the important intertwining property

2D1ld5U@21~2D2ld24d!#U21. ~4!

If E is a point in the spectrum ofH, with corresponding
eigenfunctionc for an attractive potential (l,0), then
2E14d and Uc are the corresponding eigenvalue a
eigenfunction ofH with a repulsive potential (l.0). Thus,
it is enough to consider the familiar attractive case; the
pulsive case~unlike that of thed51 continuum Hamil-
tonian! exhibits unusual spectral properties.

We now determine the spectral properties ofH for l,0.
The resolvent (H2z)21 contains all the spectral informatio
of H. For zPC, z¹@s(H)ùs(H0)#, wheres(A) denotes
the spectrum ofA, solving Eq.~1!, we obtain
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~H2z!21~xW ,yW !5~H02z!21~xW ,yW !2~H02z!21~xW ,0W !

3
l

11l~H02z!21~0W ,0W !

3~H02z!21~0W ,yW !, ~5!

and

~H02z!21~xW ,yW !5
1

~2p!dETd
eipW •(xW2yW )@2D̃~pW !2z#21dpW ,

for z¹@0,4d#. Outside@0,4d#, the spectrum ofH arises from
z singularities of Eq.~5!, that can only occur as zeroes of th
denominator, i.e., forz52Eb , Eb.0, we have

l~H02z!21~0W ,0W !5
l

~2p!dETd

dpW

2D̃~pW !1Eb

521. ~6!

Hence, since2D̃(pW )'upW u2, for small upW u, there is a
unique bound state2Eb , for d51,2 and anyl,0. For d
>3, the integral in Eq.~6! converges forEb50, so there is a
critical valuelc,0 for the occurrence of a bound state sim
lar to the continuum case~see the Birman-Schwinger boun
in Ref. @8#!.

From the Perron-Frobenius theorem fore2H ~see Ref.
@8#!, the associated ground-state eigenfunctionc(xW ) is posi-
tive @i.e.,c(xW ).0, for all xW # and, using the spectral theorem
the bound state eigenfunction is

c~xW !5@ lim
z↗2Eb

„2~2Eb!2z…~H2z!21~xW ,xW !#1/2.

Moreover, expanding 11l(H02z)21(0W ,0W ) about z

52Eb and up to a normalizationN, we find c(xW )
5N*Tdeip•W xW@2D̃(pW )1Eb#21dpW , which is even. Also, by the
Payley-Wiener theorem~see Ref.@9#!, c(xW ) decays exponen
tially. This completes the description ofH, for l,0. By Eq.
~4!, the spectrum ofH, for l.0, is (4d1Eb)ø@0,4d#. The
surprising feature is the existence of a bound state above
continuous spectrum atEa[4d1Eb . As the eigenfunction
for the attractive case is positive, the repulsive case bo
state eigenfunction has maximum oscillation, by Eq.~3!.

For comparison with the ladder approximation to the l
tice BS equation in the ensuing sections, it is convenien
have the momentum space form of Eq.~5!. With H0
52aD, and witha.0 introduced here for later use, it read

~H2z!21;~pW ,qW !5
~2p!d

2aD̃~pW !2z
d~pW 1qW!2

1

2aD̃~pW !2z

3
l

11
l

~2p!dETd

duW

2aD̃~uW !2z

1

2aD̃~qW !2z
.

~7!
8-2
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III. QUANTUM FIELD THEORY AND STOCHASTIC
GENERATOR HAMILTONIAN

In this section, we derive spectral results for thee-m spec-
trum of scalar lattice quantum field models, and relate
ladder BS equation to the nonrelativistic lattice one-parti
Schrödinger resolvent equation of Sec. II, and show how
appearance or absence of bound states below and abov
two-particle band can be understood in terms of this non
ativistic model.

Our analysis of the scalar quantum field model is p
terned after Refs.@1–3#. Here, the discrete space form
Hamiltonian is

H5 (
xWPZd

H 2
1

2

]2

]w~xW !2
1

1

2
w~xW !@~2D1m2!w#~xW !

1l6 :w~xW !6:1l:w~xW !4:J ,

wherel6.0 andl can be either positive~repulsive case! or
negative~attractive case!. m.0 is fixed and large, andl6
andulu are taken sufficiently small. The analysis of the tw
point function Sl(x) shows there is an isolated dispersi
curve El(pW )5@2D̃(pW )1m2#1/21O(l2), pW PTd. There is
also a two-particle band with upper and lower envelop
given by

El
6~pW !52F (

j 51

d

2S 16cos
pj

2 D1m2G1/2

1O~l2!,

wherepW is the total spatial field momentum and for the low
envelope each particle has momentumpW /2. Outside the band
and below the four-particle threshold, a BS analysis in
ladder approximation shows there is a bound state if,
l85(2p)22(d11)l and S̃l being the Fourier transform o
Sl , for q5(q0,qW )PR3Td,

112l8E S̃l~k0/22q0,qW !S̃l~k0/21q0,qW !dq50,

for k0 in the positive imaginary axis. We consider only ma
spectrum here and in the sequel, i.e., energy-momen
spectrum at zero spatial field momentum. Keeping only
dominant one-particle contribution toS̃l and performing the
q0 integration gives the condition 11l8*G(k0,uW )duW 50,
where G(k0,uW )52pdl(uW )$El(uW )†(k0)214El(uW )2

‡%21

and dl(uW )511O(l2). For small uuW u, G(uW ,k0)
'p@4m2(uuW 2u/m1e)#21 upon settingk05 i (2m2e), for e
.0 and small.

The correspondence with Eq.~7! is now clear upon taking
a51/m and z52e. A similar result holds approaching th
top of the first band from above, takingl positive for the
existence of the upper stable state. The absence of bo
states ford>3 is also in agreement with the nonrelativist
behavior of Sec. II. The exact intertwining relation of th
nonrelativistic Hamiltonian is here only approximate. Ho
ever, it becomes exact, in them→` limit.
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A similar correspondence with the spectrum of the latt
one-particle Schro¨dinger Hamiltonian holds for the two
particle spectrum of the infinite spatial lattice stochastic G
generator Hamiltonian,

H5 (
xWPZd

H 2
1

2

]2

]w~xW !2
1

1

8
w~xW !@~2D1m2!2w#~xW !

1
l

4
@~2D1m2!w#~xW !P8„w~xW !…

1Fl2

8
P8„w~xW !…22

l

4
P9„w~xW !…2

~2d1m2!

4 G J ,

considered in Refs.@1–3#. Herem.0 is large, 0,l!1, and
P is an even polynomial of degree 2N, bounded from below
and starting with a quartic term. Ford51,2, the bound state
below the band for the attractive case is related by stagge
to the bound state above the band for the repulsive case

IV. CLASSICAL FERROMAGNETIC SPIN SYSTEMS AT
HIGH TEMPERATURE

In this section, we determine new excitation spectrum
the transfer matrix associated with ferromagnetic class
spin systems on aZd lattice, and at high temperature~small
b.0). Also, we show how the spin system spectral prop
ties can be understood in the context of the delta funct
Hamiltonian of Sec. II.

Formally, the partition function for the system is

Z5E expS b( s~xW !s~yW ! D )
uPW Zd

dm„s~uW !…,

wheres(xW )PR is the spin variable at the lattice sitexWPZd;
the sum runs over unordered nearest neighbor pairs of sitxW

and yW , anddm(s) is the single site spin distribution~SSD!
given by dm(s)5e2V(s)ds, which is taken to be even. Th
normalizedkth-order moment of the SSD is denoted by^sk&.

In previous works@4# on the spectrum of the transfer ma
trix it is shown that there is an associated discrete imagin
time, Zd21 space lattice quantum field theory. The Hilbe
space H and self-adjoint e-m operators H>0, Pj , j
51, . . . ,d21, are constructed from correlation function
via a Feynman-Kac formula~see Ref.@10#!. In Ref. @4#, it is
shown that the low-lyinge-m spectrum has a particle inter
pretation. There is a one-particle state with the isolated
persion curveE(pW ), pW PTd21, with E(pW )>E(0W )[m(b),
where

E~pW !52 ln b^s2&22b^s2&~d21!12b^s2&

3 (
j 51

d21

~12cospj !1O~b2!.

Furthermore, in Ref.@4#, using an ‘‘equal-time,’’ relative co-
ordinate BS equation, it is shown that the mass spectrum
to the two-particle threshold 2m(b) depends on the SSD in
the following way. If the Gaussian domination inequali
8-3
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@11# for the SSD holds, i.e., ifz[^s4&23^s2&2,0, there is
no mass spectrum in@m(b),2m(b)#. On the other hand, if
z.0, there is a bound state with massMb given by
Mb52m(b)2u ln(12Y)u1O(b), where Y5@^s4&
23^s2&2#/@^s4&2^s2&2#. Besides,Mb is the only point in
the mass spectrum in@m(b),2m(b)#.

Here, we obtain spectral results up to near the fo
particle threshold 4m(b), using a ladder approximation t
the BS equation. Above 2m(b), we show that the mass spe
trum forms a band from 2m(b) to 2m(b)1w, where w

52E(pW 5pW )22E(0W )58(d21)^s2&b1O(b2) denotes the
first band width. In the interval from 2m(b)1w to 4m(b)
2e, e[e(b)↘0 asb↘0, i.e., near the four-particle thresh
old, we show the following: for anyd, if z,0, there is a
state with massMu52m(b)1w1u ln(12Y)u1O(b) andMu
is the only point in the spectrum in@2m(b)1w,4m(b)
2e#; if z.0, there is no mass spectrum in@2m(b)
1w,4m(b)2e#.

In the ladder approximation, withr5Y/@2^s2&2#, the
condition for the existence of a bound state outside the b
is

12~2p!2drE
Td21

E
2p

p

2S̃~u0,pW !S̃~k02u0,pW !du0 dpW 50,

for k0 on the positive imaginary axis and outside the ban
The spectral representation for the two-point function

given by S(x)5*Td21*0
`e2Eux0ueipW •xWdspW

(E)dpW , where

dspW (E)5z(pW ,b)d„E2E(pW )…dE1dŝpW (E) with dspW (E)
anddŝpW (E) being positive measures; the support ofdŝpW (E)
is contained in@3m(b)2 ē,`# and has the boundŝpW (0,̀ )
5*0

`dŝpW (E)5O(b). Furthermore, z(pW ,b)5^s2&(2p)12d

1O(b). Maintaining only the product of one-particle contr
butions to S̃, the bound state condition becom
(2p)22(d21)r*Td21H(pW ,k0)dpW 51, where

H~pW ,k0!52~2p!(d21)^s2&2
sinh 2E~pW !

cosh 2E~pW !2coshk0
. ~8!

Upon settingk05 ix, x52m(b)2eb , eb.0, and after us-
ing eE(pW )5b21^s2&2222( j 51

d21cospj1O(b) in Eq. ~8!, gives
ir

or

. E

02710
r-

d

.
s

for b50, Y@12e2eb#2151 and 2eb5 ln@(z
12^s2&2)/(2^s2&2)#. In particularY and hencez must be posi-
tive.

On the other hand, approaching the band from above
write x52m(b)1w1eu , eu.0, which leads to the condi
tion, for b50, Y@12eeu#2151 and eu5 ln@(2^s2&2)/(z
12^s2&2)#, for the existence of a state. Thus,Y and z are
negative, and we have shown our result.

We now make the connection between the BS equa
and the Schro¨dinger Hamiltonian resolvent equation of Se
II. Setting k05 i @2m(b)1bz8# we have, for smallb and
taking into account the form ofE(pW ),

H~pW ,k0!.2~2p!d21^s2&2

3$2b^s2&2@2D̃~pW !#2bz8%21,

so that the bound state condition becomes

12rE
Td21

duW

2b^s2&@2D̃~uW !#2bz8
50. ~9!

Comparing with thed21 resolvent of Eq.~7! of Sec. II,
we make the identification of the coupling constantl'r,
spectral parameterz5bz8, and the free HamiltonianH0
52^s2&b(2D). Note that, although the integral in Eq.~9! is
finite for d>3, the factor in front isr/b which is arbitrarily
large asb↘0. For this reason, a bound state exists for
values ofd if r andz are positive andb is sufficiently small.
We remark that this behavior agrees with the results
Sec. II.

V. CONCLUSIONS

We showed how staggering transformations play an
portant role in the understanding of the low-lying spectru
of diverse quantum lattice models. It would be relevant
extend the present analysis and consider the role playe
staggering transformations in multiphase regions and exa
soluble models, as well as to investigate degeneracie
multicomponent cases and the existence of solit
antisoliton solutions for space lattice classical nonline
wave equations and their quantum analogs.
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