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Excitation spectrum and staggering transformations in lattice quantum models
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We consider the energy-momentum excitation spectrum of diverse lattice Hamiltonian operators: the gen-
erator of the Markov semigroup of Ginzburg-Landau models with Langevin stochastic dynamics, the Hamil-
tonian of a scalar quantum field theory, and the Hamiltonian associated with the transfer matrix of a classical
ferromagnetic spin system at high temperature. The low-lying spectrum consists of a one-particle state and a
two-particle band. The two-particle spectrum is determined using a lattice version of the Bethe-Salpeter
equation. In addition to the two-particle band, depending on the lattice dimension and on the attractive or
repulsive character of the interaction between the particles of the system, there is, respectively, a bound state
below or above the two-particle band. We show how the existence or nonexistence of these bound states can
be understood in terms of a nonrelativistic single-particle lattice ‘Siohger Hamiltonian with a delta poten-
tial. A staggering transformation relates the spectra of the attractive and the repulsive cases.
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[. INTRODUCTION where A is the lattice Laplacian an¥=V(A)=\4 is an
attractive {<0) or repulsive L >0) delta potential at the
In previous workg1—3], we determined some interesting origin. It turns out that the Schdinger resolvent equation
features of the low-lying energy-momentumin) spectrum  With V as a perturbation,
associated with the generator of stochastic Ginzburg-Landau
(GL) continuous time, continuous and unbounded sfin  (H—zl)"'=(Ho—zl) '~ (Ho—z)"'V(H-z)™', (D)
infinite space lattice models of nonequilibrium statistical me-
chanics. The generator or Hamiltonian is that of an infiniteis a good approximation to the zero system momentum BS
lattice quantum field theory with slightly nonlocal interac- equation(see Ref[7]) which has the general fori =D°
tions. The Hamiltonian spectrum has a quasiparticle interpre+ D°K D. D° corresponds to the free resolvei,to the
tation with a one-particle isolated dispersion curve and a fiinteracting resolvent, ank to minus the potentiaV/. In the
nite two-particle band. The interaction of the particles has amadder approximation, the nonlocklis a local delta poten-
attractive or repulsive character depending on the parametetisl in the models we consider. Now, acting on¢?(Z%) has
of the model. In the attractive case, fib+=1,2, a bound state a continuous bounded spectrum starting at zero andj for
occurs below the two-particle threshold and, quite surpris<<O a negative energy bound state. kor 0, there is a posi-
ingly, a bound state occurs above the band in the repulsiviéve energy bound state above the continuum.
case. These results are established using a Feynman-Kac for- In contrast to the case of continuum quantum field theory,
mula and a lattice version of the Bethe-Salpd®$) equa- a richer low-lyinge-m spectrum for the lattice models we
tion, first, up to the ladder approximation and then, control-analyze is allowed by the absence of the Poingavariance
ling perturbations about Gaussians, for the complete modelan the lattice. Much of this spectral structure disappears in
Here we show that similar spectral phenomena occur fothe continuum limit, which will not concern us here. We also
other diverse Hamiltonians, i.e., that of a lattice scalar quanpoint out that the above lattice Scklinger operator can be
tum field theory and the Hamiltonian associated with minusunderstood in another way, i.e., the one-particle time-
the logarithm of the transfer matrix of classical ferromag-independent lattice Schilinger eigenvalue equation with a
netic spin systems of equilibrium statistical mechanics atlelta potential, which corresponds to the normal mode equa-
high temperaturésmall 8) on 79, In the case of the spin tion of polarized classical oscillations of an infinite lattice
system, there is a discrete imaginary time Ia¢4i! lattice  equal-mass, Hookian spring system with an isotopic type de-
field theory associated with the model and the completdect (different masgat the origin. The normal modes of such
model is not necessarily described by a perturbation of aystems are discussed in Rd#,6], in particular the physics
Gaussiarf4]. for the modes below and above the continuum frequency
Furthermore, we show that the spectral results can be urband. The case of the repulsive potential corresponds to a
derstood in terms of the spectrum of a one-particle latticesmall mass at the origin; there is a highest-energy normal
Schralinger Hamiltonian H=—-A+V(\)=Hy+V(\), mode (bound statg with energy above the continuous en-
ergy band, where adjacent particles are moving 180° out of
phase, in opposite directions.

*Electronic address: veiga@icmc.sc.usp.br The paper is organized as follows. In Sec. Il, we obtain
"Electronic address: ocarroll@icmc.sc.usp.br the spectral properties ¢, introduce the staggering trans-
*Electronic address: rsschor@fisica.ufmg.br formation, and analyze its relation with the spectrum. In Sec.
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lll, we briefly show how staggering applies to the |attice(H_Z)—l()'("}',’):(HO_Z)—l()‘(),;)_(HO_Z)—l()'(”O’)
scalar quantum field model and to lattice stochastic GL type

models. In Sec. IV, we determine the spectrum above the N

two-particle band for a classical ferromagnetic spin system at X 17z

high temperature and make the correspondence with the non- 1+ (Ho=2) 7(0,0)
relativistic single-particle Schdinger delta potential Hamil-
tonian.

X (Ho—2)"%(0,y), (5)

and
II. DELTA FUNCTION POTENTIAL AND STAGGERING

The e-m spectral behavior around the two-particle band (HO_Z)—l()g )7):
for the models described above can be understood in terms ’ (2m)d
of the spectral properties of &' lattice Schrdinger Hamil-
tonianH for a particle in a delta potential at the origin, i.e., for z¢[0,4d]. Outside] 0,4d], the spectrum o arises from
with x=(x, ... x% ez, zsingularities of Eq(5), that can only occur as zeroes of the

denominator, i.e., for=—E,, E,>0, we have

JTdE‘“"(*‘”[—Z<5)—z]-1d|5,

H=Ho+V=—A+V, V(X)=\&X), 2) )
_ 2= A dp
whereH acts on¢,(Z%, and @ is the unit vector along the M(Ho—2)"%(0,0)= df T =-1 (6
jth direction (2m)"JT=A(p) +Ep
R R N Hence, since—A(p)~|p|2, for small |p|, there is a
—Af(x)def(x)—E f(x+e')—z f(x—¢), unique bound state-E,, for d=1,2 and anya<0. Ford
= <1

=3, the integral in Eq(6) converges foE,=0, so there is a
critical value\ .<0 for the occurrence of a bound state simi-
lar to the continuum casgsee the Birman-Schwinger bound
in Ref. [8]).

From the Perron-Frobenius theorem fer™ (see Ref.
[8]), the associated ground-state eigenfunciigr) is posi-

dive [i.e., (x)>0, for all x] and, using the spectral theorem,

fel,(79.

In momentum spaceH, is multiplication by Z}Ll(l
—cosp)=—A(p), p=(p*, ... p%) e T'=(—m,7]’ and the
spectrum ofH, is [0,4d], and is absolutely continuous. Un-
like the continuum, the lattice delta potential is a bounde

Operator for anyj_ the bound state eigenfunction iS
We now determine the spectral properties of the Hamil- - ) g% i
tonian H of Eq. (2). First, we define a unitargtaggering p(xX)=[ lim (=(=Ep)—=2)(H=2)"*(X,x)]"
2/ —Ep

transformationU, which plays a key role in understanding

the relation between the spectrum ldfwith A>0 and X\ . P
<0, by Moreover, expanding +A(Hy—2z) ~(0,0) about z

=—E, and up to a normalizationV, we find zp()?)

= N[ aeP X[ —A(p)+Ep]~1dp, which is even. Also, by the
Payley-Wiener theorerfsee Ref[9]), y(x) decays exponen-
o . ] tially. This completes the description bf, for A <0. By Eq.

and satisfied)*=1, U~ "=U, angl |ts~rrlom£antum represen- (1), the spectrum o, for A>0, is (4d+E,)U[0,4d]. The
tation has the form Wf) (p)=f(w—p), where =  surprising feature is the existence of a bound state above the

d
UI)=(-D 2 M0, fetnz9), )

=(m,m, ...,m), and T(p)==;_0e P *f(x). U takes continuous spectrum &,=4d+E,. As the eigenfunction
smooth functions into rough functions and vice versa and haor the attractive case is positive, the repulsive case bound
the important intertwining property state eigenfunction has maximum oscillation, by B].
For comparison with the ladder approximation to the lat-
—A+NS=U[—1(—A—\6—4d)JU L. 4 tice BS equation in the ensuing sections, it is convenient to
i o ) , have the momentum space form of E(p). With Hg,
If Eis a point in the spectrum off, with corresponding — _ g4 and witha>0 introduced here for later use, it reads
eigenfunctiony for an attractive potential (<0), then
—E+4d and Uy are the corresponding eigenvalue and . (27r)¢ o 1
eigenfunction ofH with a repulsive potentialN>0). Thus, (H—z) ' (p,q)=——=——468(p+q)— ——=—
it is enough to consider the familiar attractive case; the re- —alA(p)-z —alA(p)—z
pulsive case(unlike that of thed=1 continuum Hamil-
tonian exhibits unusual spectral properties. A 1
X = —
We now determine the spectral propertied-bfor A <O. A du —aA(q)-z
The resolventl —z) ~* contains all the spectral information 1+ 5 dJ’ S aA
of H. For ze C, z&[o(H)No(Ho)], whereo(A) denotes ()"0 8 (u)~2
the spectrum of\, solving Eq.(1), we obtain (7
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. QUANTUM FIELD THEORY AND STOCHASTIC A similar correspondence with the spectrum of the lattice
GENERATOR HAMILTONIAN one-particle Schminger Hamiltonian holds for the two-
particle spectrum of the infinite spatial lattice stochastic GL

In this section, we derive spectral results for & spec- eqenerator Hamiltonian,

trum of scalar lattice quantum field models, and relate th

ladder BS equation to the nonrelativistic lattice one-patrticle 2

b . 1 9 1 . -
Schralinger resolvent equation of Sec. Il, and show how the H= —5——=5+ —o(X)[(—A+m?)?¢](X)
appearance or absence of bound states below and above the xe7d 2 gp(x)? 8

two-particle band can be understood in terms of this nonrel- N

ativistic model. +—[(—A+ m2)¢](;)p1 ((P()Z))
Our analysis of the scalar quantum field model is pat- 4

terned after Refs[1-3]. Here, the discrete space formal

o 2 DY - 2d+m?
Hamiltonian is +| =P (e(X))2= =P"(p(X))— ¥ ,
, 8 4 4
J - -
= - 4 _ 2
H _x"ezd { 2 go(x)? +2 e()(—A+mI)e](x) considered in Ref$1-3|. Herem>0 is large, 6<\ <1, and

‘P is an even polynomial of degreé\?2 bounded from below
R R and starting with a quartic term. Fdr=1,2, the bound state
+Ngi@(X) %+ <P(X)43] , below the band for the attractive case is related by staggering
to the bound state above the band for the repulsive case.
wherel >0 and\ can be either positivé&epulsive caseor
negative(attractive case m>0 is fixed and large, andg IV. CLASSICAL FERROMAGNETIC SPIN SYSTEMS AT
and|\| are taken sufficiently small. The analysis of the two- HIGH TEMPERATURE

oint function S, (x) shows there is an isolated dispersion . . . L
P Si(x) P In this section, we determine new excitation spectrum for

curve E,(p)=[—~A(p)+m’]'>+O(\?), peT. There iS o yransfer matrix associated with ferromagnetic classical
also a two-particle band with upper and lower envelopegin systems on 9 lattice, and at high temperatutemall
given by B>0). Also, we show how the spin system spectral proper-
172 ties can be understood in the context of the delta function
+0(\?), Hamiltonian of Sec. II.
Formally, the partition function for the system is

j

Er(p)=2 1icos% +m?

d
> 2
=1

Whereﬁ is the total spatial field momentum and for the lower - -
: - . z=f exp(ﬁZ s(X)s(y)
envelope each particle has momentpf. Outside the band

and below the four-particle threshold, a BS analysis in the R R
ladder approximation shows there is a bound state if, forvheres(x) e R is the spin variable at the lattice site= Zdj
N'=(27) 2@+ D)\ andS, being the Fourier transform of the sum runs over unordered nearest neighbor pairs ofisites
S,, for q=(q°%q) e RxT9, andy, anddu(s) is the single site spin distributiofS8SD)
given bydu(s)=e V®ds, which is taken to be even. The
normalizedkth-order moment of the SSD is denoted(s}).

In previous workg4] on the spectrum of the transfer ma-
trix it is shown that there is an associated discrete imaginary
for k° in the positive imaginary axis. We consider only masstime, 79~ space lattice quantum field theory. The Hilbert
spectrum here and in the sequel, i.e., energy-momenturspace H and self-adjointe-m operators H=0, P!, j
spectrum at zero spatial field momentum. Keeping only the=1, ... d—1, are constructed from correlation functions
dominant one-particle contribution &, and performing the ~Via a Feynman-Kac formulésee Ref[10]). In Ref.[4], it is
q° integration gives the condition 4\’ fG(k® G)du=0, Shown that the low-lying-m spectrum has a particle inter-
where G(KO,0) = 20l (G)E, (0)[(KO) 2+ 4E, (02} pretation. There is a one-particle state with the isolated dis-

; N Ao TdLl i - Ay —
and d%(ﬁ)=1+0(>\2). For  small |G|, G(G,ko) persion curveE(p), peT% *, with E(p)=E(0)=m(p),

2 where

~a[4m?(Ju?|//m+ €)] ! upon settingk®=i(2m—¢), for €
>0 and small. E(p)=—In B(s*) —2(s*)(d~ 1)+ 25(s%)

The correspondence with E(Y) is now clear upon taking
a=1/m and z= —e. A similar result holds approaching the i )
top of the first band from above, taking positive for the ngl (1—cosp’)+O(5).
existence of the upper stable state. The absence of bound
states ford=3 is also in agreement with the nonrelativistic Furthermore, in Refl4], using an “equal-time,” relative co-
behavior of Sec. Il. The exact intertwining relation of the ordinate BS equation, it is shown that the mass spectrum up
nonrelativistic Hamiltonian is here only approximate. How- to the two-particle thresholdr@(3) depends on the SSD in
ever, it becomes exact, in the— o limit. the following way. If the Gaussian domination inequality

11 duts(u),

ueZ

1+2\' f S,(k%2—q°,q)S, (k%2+q°,q)dg=0,

d-1
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[11] for the SSD holds, i.e., if=(s*)—3(s?)?<0, there is for g=0, Y[l—e %] '=1 and —e,=IN[(¢

no mass spectrum ifm(B),2m(B)]. On the other hand, if 1 2(s??)/(2(s??)]. In particularY and hencg must be posi-
(>0, there is a bound state with madd, given by tjve.

My=2m(B)—|In(1-Y)[+O(B), where Y =[(s% On the other hand, approaching the band from above we
—3(s?)?)/[(s"—(s?)?]. Besides,M,, is the only point in  write y=2m(B)+w+e¢,, €,>0, which leads to the condi-
the mass spectrum m(8),2m(B)]. tion, for =0, Y[1—e%] 1=1 and e,=In[(2A?/(L

Here, we obtain spectral results up to near the four-+2(?)?)], for the existence of a state. Thug, and ¢ are
particle threshold #(B), using a ladder approximation to negative, and we have shown our result.
the BS equation. Aboveri(3), we show that the mass spec- We now make the connection between the BS equation
trum forms a band from ®@(B) to 2m(B)+w, wherew  and the Scrg)ruﬂnger Hamiltor/ﬂan resolvent equation of Sec.
= 2E(p=7)—2E(0)=8(d—1)(s?)8+O(B?) denotes the Il. Sett_lng k’=i[2m(B) + BZ'] we have, for small3 and
first band width. In the interval fromm(8) +w to 4m(g)  taking into account the form d&(p),

—¢€, e=¢e(B)\,0 asB\,0, i.e., near the four-particle thresh- H(f),ko)zZ(qu)d’l(sz)z
old, we show the following: for any, if <0, there is a .
state with mas#/,=2m(B) + w+ |In(1-Y)|+0(B) andM,, x{2pB(s>y[—A(p)]—Bz'} 1,

is the only point in the spectrum ih2m(B8)+w,4m(B)

_ . so that the bound state condition becomes
—¢€]; if >0, there is no mass spectrum [rZ2m(pB)

+w,4m(B) — €]. o du .
In the ladder approximation, with=Y/[2(s%)*], the —Pf 41 NV

condition for the existence of a bound state outside the band TR - Alw)] - Bz

is Comparing with thed—1 resolvent of Eq(7) of Sec. Il,

- we make the identification of the coupling constantp,
1—(277)‘dpJ J 23(u°,p)S(k°—u®,p)du® dp=0,  spectral parameter=p4z', and the free HamiltoniarH,
T - =2(s?)B(—A). Note that, although the integral in E@) is
for k° on the positive imaginary axis and outside the band. finite for d=3, the faqtor in front i/ B which is arbltrarlly
The spectral representation for the two-point function is'@'9€ asB™,0. For this reason, a bound state exists for all
. g1 e EPOaiP XY (EYdD.  where values ofd if p and{ are positive ang is sufficiently small.
given by S(x)=/ra-1foe€ € o(E)dp, We remark that this behavior agrees with the results of
daﬁ(g)zz(ﬁ,ﬂ) S(E—E(p))dE+doy(E) with dog(E) ~ Sec. |l
anddo;(E) being positive measures; the supportof;(E) V. CONCLUSIONS

is contained i 3m(B) —¢,] and has the bound:;(0.) We showed how staggering transformations play an im-
=[pdo(E)=0(B). Furthermore, z(p,B)=(s?(27)1"9  portant role in the understanding of the low-lying spectrum
+0O(B). Maintaining only the product of one-particle contri- Of diverse quantum lattice models. It would be relevant to

butions to S the bound state condition becomes extend the present analysis and consider the role played by
' staggering transformations in multiphase regions and exactly

-2(d-1 ~ 1OV A A—
(2m) 24 Yp[ra-1H(p,k%)dp=1, where soluble models, as well as to investigate degeneracies in
inh 2E() multicomponent cases and the existence of soliton-
- sin L . . - :
H(p, k%) =2(27)(@1)(s?)2 P ) antisoliton solutions for space lattice classical nonlinear

cosh E(p) —coshk®’ wave equations and their quantum analogs.

Upon settingk®=ix, x=2m(B)—e,, €,>0, and after us- ACKNOWLEDGMENTS
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